
1

0.1 Introduction
Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming
language. It was created by Guido van Rossum during 1985- 1990. Like Perl, Python source code is also
available under the GNU General Public License (GPL).This experiments gives enough understanding on
Python programming language.
Python 3.0 was released in 2008. The final 2.x version 2.7 release came out in mid-2010, with a
statement of extended support for this end-of-life release. The 2.x branch will see no new major
releases after that. 3.x is under active development and has already seen over five years of stable
releases, including version 3.3 in 2012, 3.4 in 2014, and 3.5 in 2015. This means that all recent standard
library improvements, for example, are only available by default in Python 3.x. For more information,
see this Link.

0.2 Objective
The objectives of the experiment is to learn the following:

 Give a quick introduction about Python Programming.

 Python syntax.

 Show some examples about Python.

 Show some Python functions and Libraries.

0.3 Basic Concept
Python is designed to be highly readable. It uses English keywords frequently where as other
languages use punctuation, and it has fewer syntactical constructions than other languages.
 Python is Interpreted: Python is processed at runtime by the interpreter. You do not need to

compile your program before executing it. This is similar to PERL and PHP.
 Python is Interactive: You can actually sit at a Python prompt and interact with the interpreter

directly to write your programs.
 Python is Object-Oriented: Python supports Object-Oriented style or technique of programming

that encapsulates code within objects.
 Python is a Beginner's Language: Python is a great language for the beginner-level programmers

and supports the development of a wide range of applications from simple text processing to
WWW browsers to games.

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax. This
allows the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visible to the eyes.
 Easy-to-maintain: Python's source code is fairly easy-to-maintain.
 Interactive Mode: Python has support for an interactive mode which allows interactive testing

and debugging of snippets of code.
 Portable: Python can run on a wide variety of hardware platforms and has the same interface on

all platforms.

7
Learning & Programming

Python

https://wiki.python.org/moin/Python2orPython3

2

 Extendable: You can add low-level modules to the Python interpreter. These modules enable
programmers to add to or customize their tools to be more efficient.

 Databases: Python provides interfaces to all major commercial databases.
 Scalable: Python provides a better structure and support for large programs than shell scripting.
 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.
 GUI Programming: Python supports GUI applications that can be created and ported to many

system calls, libraries and windows systems, such as Windows MFC, Macintosh, and the X
Window system of Unix.

 A broad standard library: Python's bulk of the library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

The following is a partial list of python libraries:
NumPy: it`s the fundamental package for scientific computing with Python. It contains among other
things such as a powerful N-dimensional array object, tools for integrating C/C++ code, useful linear
algebra, Fourier transform, and random number capabilities.
matplotlib: A numerical plotting library. It is very useful for any data scientist or any data analyzer.
Pygame: This library will help you achieve your goal of 2d game development.
Requests: The most famous http library.
Twisted: The most important library for any network application developer.
Opencv: it`s a library of Python bindings designed to solve computer vision problems.
Collections: The most famous data structure library.

0.4 Download Python
Python runs on many operating systems such as MS-Windows, Mac OS, Mac OS X, Linux, FreeBSD,
OpenBSD, Solaris, AIX, and many varieties of free UNIX like systems. Python comes with many Linux
versions. The easiest way to install the Python is to use package manger such as apt-get, yum, and so on.
$ sudo apt-get install python
To see which version of Python you have installed, run the following commands in terminal:
$ python --version
To run Python just type:
$ python

0.5.1 Structure of a Python program
Python program is a text file. You can use any text editor to create the program such as gedit, emacs or
even vi. Normally the following line will be the first line.

!/usr/bin/python

This tells Linux to use /usr/bin/python executable to interpret rest of the lines in the program. This line
may vary depending on the location of python binary. Sometimes it may be /usr/local/bin/python or
some other place.
Commonly .py extension is used (e.g. file.py), however you can write the python code without extension
also. It will still work fine.

0.5.2 Comments
The symbol # is used for comments. All text from # till end of line is treated as comment.

 # This is a full line comment

http://www.numpy.org/
http://matplotlib.org/
http://www.pygame.org/news.html
http://www.python-requests.org/en/master/
http://twistedmatrix.com/trac/
http://docs.opencv.org/trunk/d0/de3/tutorial_py_intro.html
https://docs.python.org/3/library/collections.html

3

Note: There is multiline comment in Python Language.

 ‘’’
This is a multiline
Comment.
‘’’

0.6 Variable types
Python has five standard data types:

 Numbers
 String
 List
 Tuple
 Dictionary

0.6.1 Python Numbers
Number data types store numeric values. Number objects are created when you assign a value to them.

var1 = 2
var2 = 11

You can delete a single object or multiple objects by using the del statement.

del var
del var_a, var_b

Python supports four different numerical types:
 int (signed integers)
 Long
 float (floating point real values)
 complex (complex numbers)

Int Float Complex

10 0.0 3.14j

100 15.20 45.j

-786 -21.9 9.322e-36j

080 32.3+e18 .876j

-0x260 -32.54e100 3e+26J

0x69 70.2-E12 4.53e-7j

 A complex number consists of an ordered pair of real floating-point numbers denoted by x + yj,
where x and y are the real numbers and j is the imaginary unit.

4

Example:

Output:

0.6.2 Python Strings
Strings in Python are identified as a contiguous set of characters represented in the quotation marks.
Python allows for either pairs of single or double quotes. Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at 0 in the beginning of the string and working their way from
-1 at the end.

0.6.3 Python List
List contains items separated by commas and enclosed within square brackets ([]). To some extent, lists
are similar to arrays in C. One difference between them is that all the items belonging to a list can be of
different data type.

0.6.4 Python Tuple
Tuple consists of a number of values separated by commas. Unlike lists, however, tuples are enclosed
within parentheses.

5

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and their elements
and size can be changed, while tuples are enclosed in parentheses (()) and cannot be updated. Tuples
can be thought of as read-only lists.
Example:

The following code is invalid with tuple, because we attempted to update a tuple, which is not allowed.
Similar case is possible with lists.

tuple = ('abcd', 786 , 2.23, 'john', 70.2)
list = ['abcd', 786 , 2.23, 'john', 70.2]
tuple[2] = 1000 # Invalid syntax with tuple
list[2] = 1000 # Valid syntax with list

0.6.5 Python Dictionary
Python's dictionaries are kind of hash table type. They work like associative arrays or hashes found in
Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are usually
numbers or strings. Values, on the other hand, can be any arbitrary Python object Dictionaries are
enclosed by curly braces ({ }) and values can be assigned and accessed using square braces ([]).

Data type conversion
Sometimes, you may need to perform conversions between the built-in types. To convert between types,
you simply use the type name as a function.
There are several built-in functions to perform conversion from one data type to another. These
functions return a new object representing the converted value.

Function Description

int(x ,[base]) Converts x to an integer. base specifies the base if x is a string.

long(x, [base]) Converts x to a long integer. base specifies the base if x is a string.

float(x) Converts x to a floating-point number.

complex(real ,[imag]) Creates a complex number.

6

Example:

Output:

0.7 Basic Operators
Python language supports the following types of operators

0.7.1 Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20 then:

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns
remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to the power 20

Example:

7

Output:

0.7.2 Python comparison Operators
Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

== If the values of two operands are equal, then the condition becomes true. (a == b) is not true.

!= If values of two operands are not equal, then condition becomes true.

> If the value of left operand is greater than the value of right operand,
then condition becomes true.

(a > b) is not true.

< If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right
operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b) is true.

Example:

Output:

8

0.7.3 Python Assignment Operators
Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b assigns value
of a + b into c

+= Add AND It adds right operand to the left operand and assign the
result to left operand

c += a is equivalent to c
= c + a

-= Subtract AND It subtracts right operand from the left operand and assign
the result to left operand

c -= a is equivalent to c
= c - a

*= Multiply AND It multiplies right operand with the left operand and assign
the result to left operand

c *= a is equivalent to c
= c * a

/= Divide AND It divides left operand with the right operand and assign
the result to left operand

c /= a is equivalent to c
= c / ac /= a is
equivalent to c = c / a

%= Modulus AND It takes modulus using two operands and assign the result
to left operand

c %= a is equivalent to
c = c % a

Example:

Output:

9

0.7.4 Python Bitwise Operation
Bitwise operator works on bits and performs bit-by-bit operation. Assume if a=60, and b = 13.

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both
operands

(a & b) (means 0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 (means 0011
1101)

^ Binary XOR It copies the bit if it is set in one operand but not both. (a ^ b) = 49 (means 0011
0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits. (~a) = -61 (means 1100 0011
in 2's complement form due
to a signed binary number.

<< Binary Left Shift The left operands value is moved left by the number of
bits specified by the right operand.

a << = 240 (means 1111
0000)

>> Binary Right Shift The left operands value is moved right by the number
of bits specified by the right operand.

a >> = 15 (means 0000 1111)

Example:

Output:

10

0.7.5 Python Logical Operation
There are following logical operators supported by Python language. Assume variable a holds 10 and
variable b holds 20 then:

Operator Description Example

AND If both the operands are true then condition becomes true. (a and b) is true.

OR If any of the two operands are non-zero then condition
becomes true.

(a or b) is true.

NOT Used to reverse the logical state of its operand. Not (a and b) is false.

Example:

0.8 If Statement

if expression:
 statement(s)
else:
 statement(s)

Example:

Note: There is one-line if clause in Python Language

0.9 Loops
Python programming language provides following types of loops to handle looping requirements.

0.9.1 While Loop
The syntax of a while loop in Python programming language is:

while expression:
 statement(s)

11

Example:

Python supports to have an else statement associated with a loop statement.

Note: There is one-line while clause in Python Language

0.9.2 For Loop
The syntax of a while loop in Python programming language is:

for iterating_var in sequence:
 statements(s)

Example:

Using else Statement with Loops

12

0.10 Loop control Statements
Loop control statements change execution from its normal sequence. When execution leaves a scope,
all automatic objects that were created in that scope are destroyed.

0.10.1 Break statement

0.10.2 Continue Statement

0.11 Input in Python
Input can come in various ways, for example from a files, keyboard, database, another computer, mouse
clicks and movements or from the internet.

0.11.1 Reading Keyboard Input
Python provides built-in function to read a line of text from standard input, which by default comes from
the keyboard. This function is input().
Example:

0.11.2 File Input/output
Python provides basic functions and methods necessary to manipulate files by default. You can do most
of the file manipulation using a file object.
Open file Syntax:

file object = open(file_name ,[access_mode],[buffering])

Here are parameter details:
 file_name: The file_name argument is a string value that contains the name of the file that you

want to access.
 access_mode: The access_mode determines the mode in which the file has to be opened, i.e.,

read, write, append, etc. A complete list of possible values is given below in the table. This is
optional parameter and the default file access mode is read (r).

 buffering: If the buffering value is set to 0, no buffering takes place. If the buffering value is 1,
line buffering is performed while accessing a file. If you specify the buffering value as an integer
greater than 1, then buffering action is performed with the indicated buffer size. If negative, the
buffer size is the system default(default behavior).

13

Here is a list of the different modes of opening a file :

Modes Description

R Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode.

Rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of
the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file.

W Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing.

Wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading and writing.

A Opens a file for appending. The file pointer is at the end of the file if the file exists. That
is, the file is in the append mode. If the file does not exist, it creates a new file for
writing.

Ab Opens a file for appending in binary format. The file pointer is at the end of the file if
the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

14

The file Object Attributes
Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

Example:

Output:

Close File:

Write to file:
Syntax:

fileObject.write(string);

15

Example:

Read from file:
Syntax:

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This method starts
reading from the beginning of the file and if count is missing, then it tries to read as much as possible,
maybe until the end of file.
Example:

The next example is to compute the average of the numbers in the file. Open file called foo.txt
and add this content:

1
15
20
33
14
20.5

Run the following code after storing it in fileName.py files.

16

todo: write result on a file.
0.12 Python Examples
Example1:

todo: find the sum of the digits.
Example2:

todo: rewrite this code using For loop.
Example3:

todo: find the Min number.

0.13 Todo:

This part will be given to you by the teacher assistant in the lab time.

